Design of a bistable switch to control cellular uptake.
نویسندگان
چکیده
Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation-repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on-off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures.
منابع مشابه
Cellular Automata Simulation of a Bistable Reaction-Diffusion System: Microscopic and Macroscopic Approaches
The Cellular Automata method has been used to simulate the pattern formation of the Schlögl model as a bistable Reaction-Diffusion System. Both microscopic and macroscopic Cellular Automata approaches have been considered and two different methods for obtaining the probabilities in the microscopic approach have been mentioned. The results show the tendency of the system towards the more sta...
متن کاملSpatial Epigenetic Control of Mono- and Bistable Gene Expression
Bistability in signaling networks is frequently employed to promote stochastic switch-like transitions between cellular differentiation states. Differentiation can also be triggered by antagonism of activators and repressors mediated by epigenetic processes that constitute regulatory circuits anchored to the chromosome. Their regulatory logic has remained unclear. A reaction-diffusion model rev...
متن کاملAnalysis of Response Robustness for a Multi-Objective Mathematical Model of Dynamic Cellular Manufacturing
The multi-objective optimization problem is the main purpose of generating an optimal set of targets known as Pareto optimal frontier to be provided the ultimate decision-makers. The final selection of point of Pareto frontier is usually made only based on the goals presented in the mathematical model to implement the considered system by the decision-makers. In this paper, a mathematical model...
متن کاملOptimal design of a bistable switch.
Determining optimally designed structures is important for diverse fields of science and engineering. Here we describe a procedure for calculating the optimal design of a switch and apply the method to a bistable microelectromechanical system relay switch. The approach focuses on characterizing the unstable transition state connecting the two stable equilibria to control the force displacements...
متن کاملAnalysis and Design of a New Single Switch Non-Isolated Buck-Boost dc-dc Converter
In this paper, a new transformerless buck-boost converter based on ZETA converter is introduced. The proposed converter has the ZETA converter advantages such as, buck-boost capability and input to output DC insulation. The suggested converter voltage gain is higher than the classic ZETA converter. In the presented converter, only one main switch is utilized. The proposed converter offers low v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 12 113 شماره
صفحات -
تاریخ انتشار 2015